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Transmission Matrix Representation of
Finline Discontinuities

ABBAS SAYED OMAR anp KLAUS SCHUNEMANN, MEMBER, IEEE

Abstract —A general treatise of cascaded discontinuities in inhomoge-
neous waveguides is given and applied to finline circuits. A transmission
matrix representation is superior to a scattering matrix representation as
far as CPU time is concerned. The scattering matrix is, however, advanta-
geous if the sum of the line lengths separating the discontinuities is large.
Numerical examples are given in order to illustrate the effect of increasing
the number of modes used to represent the field at both sides of the
discontinuity.

I. INTRODUCTION

HE PROBLEM OF electromagnetic scattering at

waveguide discontinuities has been treated by many
exact and approximate methods. The most general, rigor-
ous, and systematic one is the modal expansion method,
which has been used, e.g., in [1]-[4]. Its formulation for
homogeneously filled waveguides differs from that for in-
homogeneously filled waveguides. In the former case, the
normal modes are either of the TE- or TM-type, so that the
transverse magnetic-field vector of any mode is related to
its transverse electric-field vector via the wave admittance.
This simplifies the problem to some extent through the use
of impedance and/or admittance matrices [3], [4]. In the
latter case, the normal modes are of the hybrid type (i.c.,
linear combinations of TE and TM fields) so that wave
impedances and/or admittances cannot be defined any
longer. Both electric- and magnetic-field vectors should be
used to characterize a hybrid mode. This general formula-
tion has been presented, e.g., in [1], [2]. It will be followed
here.

Microwave circuits usually consist of a large number of
line sections that are separated by abrupt junctions. In the
case of multisection finline bandpass filters, e.g., the di-
mensions of the slot pattern must be altered many times
during the numerical design procedure until the required
response curve is well approximated. Hence, saving CPU
time is an important factor in system design. We will
compare transmission and scattering matrix representa-
tions of cascaded junctions regarding this point. Another
important factor in saving CPU time is the number of
modes used to represent the field at both sides of the
discontinuity. This factor will also be studied by compari-
son to measured data. Finline circuits are taken as a case
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Fig. 1. Waveguide discontinuities of the (a) boundary-reduction-type,

(b) boundary-enlargement-type, and (c) mixed-type.

study, although the results are general and can be applied
to any other circuit technology.

II. Basic FORMULATION

Most of the waveguide discontinuities have either of the
forms shown in Fig. 1: a boundary-reduction-type [1], a
boundary-enlargement-type [1], and a mixed-type discon-
tinuity. Following [1] and [2], we will relate the complex
amplitude vectors a® and a® of the incident modes to
bV and b@ of the scattered modes. Limiting the number
of modes in guides “1” and “2” which are to be taken into
account to N and M, respectively, both a® and b® can
be written as N-dimensional column vectors and a® and
b® as M-dimensional ones.

From the many orthogonality relations existing between
the normal modes of uniform waveguides with perfectly
conducting walls and lossless isotropic filling media, we use
the following [5]:

[ (8 xh3)-ds = B3,
1

f( Sz)(e,?’ X hD*)-ds =, 8, (1)

0018-9480,/85 /0900-0765$01.00 ©1985 IEEE



766

T

::2::
n7u

ok‘——_

Fig. 2. Equivalence between a mixed-type discontinuity and two normal
discontinuities in cascade.

Here, e and A are the transverse electric- and mag-
netic-field vectors of the nth and mth normal modes,
respectively, in waveguide “1”, e$? and h? are the corre-
sponding vectors in waveguide “2”, 8, is the Kronecker
delta, S, and S, are the cross sections of the corresponding

guides, and “*” denotes “complex conjugate”.

A. Boundary - Reduction and Boundary - Enlargement
Discontiniuties

The analysis of both types of discontinuities is essen-
tially the same, so that we will give the equations describ-
ing the boundary-reduction-type (shown in Fig. 1(a)) only.
By defining

A

nm

[ (e@xnP)-as,

()

n=1,2,...,N

m=1,2,...,. M )

the amplitude vectors of the incident and reflected modes
can be related by the following two matrix equations:

[A,]-(a®+BD) =[A4]-(a® +bP)
[Ap]* (6@ —a®)=[4]*"(a® - D)

(3a)
(3b)

where
[A ] is an (N X N) diagonal matrix with elements P,,
[Aolis an (M X M) diagonal matrix with elements Q,,,
[A] is an (N X M) matrix with elements 4,,,, and
[A]** means the conjugate transpose matrix of [ A4].

B.  Mixed-Type Discontinuity

The type of discontinuity shown in Fig. 1(c) can be
regarded as two cascaded junctions, the first between wave-
guides “1” and “3” being of the boundary-reduction-type,
the second between waveguides “3” and “2” being of the
boundary-enlargement-type. This equivalence has been
sketched in Fig. 2. The length / of guide “3” is assumed to
be zero.
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This treatment is not in principle different from that
proposed in [2], where the electromagnetic fields in wave-
guides “1” and “2” have independently been matched in
the junction plane z = z,, to a set of electric and magnetic
vectors which is complete with respect to the common
aperture between “1” and “2”. In our formulation, this
complete set is just the set of normal modes in waveguide
“3” whose cross section equals the common aperture.

C. The Conservation of Complex Power

The continuity of complex power across a waveguide
junction has been used in [3] to replace the matching
condition for the transverse magnetic field. Furthermore,
this principle has been shown in [4] to result from match-
ing the transverse electric and magnetic fields in the junc-
tion plane. In both cases, the waveguides forming the
junction were homogeneously filled. We will prove in the
following that any of the relations originating from

1) matching the transverse electric field,
2) matching the transverse magnetic field,
3) the continuity of the complex power,

can be deduced from the other two.

This holds not only for junctions between homoge-
neously filled waveguides but also for the general case
where the normal modes are of the hybrid-type.

For any of the junctions shown in Fig. 1, the continuity
of the complex power is represented by the following
relation:

(a®=pDY*.[A,]-(a® +bD) =
(59 -a@)[A,]- (a@+5®).  (4)

As an example, the boundary-reduction case is considered,
which is characterized by (3). These two equations repre-
sent, in fact, the matching of the electric and magnetic
fields, respectively, at the junction, and can be used to
verify (4). Inserting first (3a) and then (3b), we get

(a® = p®)*.[X,]-(a® +bD) =
(a® —pD)*1.[4]-(a® + b)) =
(6P —a®)*.[\,]-(a®+5?), Q.E.D.

In a similar way, we can use any two equations of (3a),
(3b), and (4) to deduce the third.

D. Scattering Matrix Representation

As an example, the boundary-reduction case will be
treated. With

[R1=[Ap]7"[4]
[71=([re] " L4))*
(3) can be written as
a®+p®=[R]-(a®+p®)
bP—a®=[T]-(a®-pW)

()

(6)
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where [ R] represents an (N X M) matrix, [T] an (M X N)
matrix so that the first relation establishes N linear equa-
tions, the second M equations. Thus, (N + M) variables
can be expressed in terms of the other (N + M) variables.
In particular, it is impossible to express a, 5" in terms
of @@, b® if N+ M, because the former represent (2N),
the latter (2M) variables. The most suitable choice of
dependent and independent variables is to express b, b®
in terms of a¥, a4, each pair representing (N + M) vari-
ables. This leads to the scattering matrix representation

b® _ [Sul [S]| [a®
b | [Sa]l  [S2] |a®
with

[$u]=([RI[T]+[1]) " -([RIIT]-[1]),
an (N X N ) matrix
[S,]=2([R][T]+[I])""-[R], an (N X M) matrix
[Sx]=[TI([7]-[Syu]), an (M X N) matrix
[S,]1=[1]-[T][S;,], an(M X M) matrix

and [7I] is the unity matrix.

At least one matrix inversion and five matrix multiplica-
tions have to be performed in order to compute the differ-
ent submatrices of the scattering matrix.

(7)

(®)

E. Transmission Matrix Representation

The situation is much simpler for an equal number of
modes in waveguides “1” and “2”: N = M. Then one can
relate the incident and reflected modes in each waveguide
by the transmission matrix according to

a]-150 o e

[U]=3([R]-[T]7")
[V1=3([RI+[T]17). (10)

The computation of the submatrices [U] and [V'] requires
just one matrix inversion. Hence, it is faster than the
computation of the submatrices of the scattering matrix.
The only restriction is that an equal number of modes must
be used at either side of the junction.

The network theory of multiple-port microwave net-
works developed in [6] uses both transmission and scatter-
ing matrices. Although the formulation with the transmis-
sion matrix seems to be quite general, it has been proven
there that for the general case M # N there exists a
mathematical inconsistency. In what follows, we will give a
deeper insight into the reasons.

Assume an (N X M) matrix [A4] is pre-multiplied by an
(M X N) matrix [ B] in order to get a square matrix [C] of
order (M X M)

)

with

[C]=[B]-[4].

Then the M equations represented by the rows of [C] are
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Fig. 3. Scattering matrix representation of cascaded discontinuities.

expressed as M linear combinations of the original N
equations represented by the rows of [A]. Two cases must
be distinguished.

1) M < N: Then one has lost all the information which
is contained in the now missing (N — M) equations, al-
though [C] may be inverted.

2) M > N: Then the additional (M — N) equations are
linearly dependent on the other N equations and [C] is
singular, i.e., it cannot be inverted.

In conclusion, it is important to know that matching N
modes at one side of the discontinuity to M modes at the
other always results in (N + M) equations relating 2(M +
N) variables. Hence, the only possibility is to express
(N + M) variables in terms of the other (N + M) vari-
ables.

A further advantage of the transmission matrix represen-
tation is the easy handling of mixed-type discontinuities.
The resulting submatrices [U] and [V'] are then given by

[U]= [V ][Us] + U] Ve]
[V1=[V1[Vs] +[U[ U] (11)

Subscripts a and B refer to the junction between “1” and
“3” and between “3” and “2”, respectively.

F.  Cascaded Discontinuities

In the case of cascaded discontinuities, there are two
approaches. The first is to process the individual scattering
matrices for calculating the overall scattering matrix. This
approach has already been used for both the general case
of interconnected multiports (e.g., in [7] and [8]) and the
specific case of cascaded discontinuities (e.g., in [9]). Refer-
ring to Fig. 3, the submatrices forming the overall scatter-
ing matrix (superscript ¢) relating the reflected waves b,
b® to the incident waves a®, a® are given by

[s0] = [s@]+[s@][s@IE1[sP]

[s@] = [s@]-(L11+[SPILEN[SR])- [s2
[s0] = [sRIEI[s$]

[s@] = [s2]+[sP]E][sP][sR

[E]=([1]-[s®][s®]) " (12)
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Fig. 4. Collecting discontinuities into groups which are cascaded by
processing scattering matrices.

These calculations require at least one matrix inversion and
ten matrix multiplications, if two discontinuities in cascade
are to be treated.

The second approach can be applied only if equal num-
bers of modes are used for any of the guides. Then the
individual transmission matrices can be processed. This
requires eight matrix multiplications and no matrix inver-
sion according to the following relations which can be
derived from Fig. 3 (in which S should be thought to be
replaced by T'):

[70] = [P 2]+ [1P][ 1

[T1(2t) = [T1(11)] [Tz(zz)] + [Tl(Zl)] [Tl(zz)

[70] = [TP][ 2]+ [T9][19]

[Tz(zt) = [T2(11) [Tz(zz)]+[T2(21)][T1(22)]- (13)
III. THE OVERFLOW PROBLEM

Cascaded discontinuities are always separated by uni-
form line sections, which may give rise to computational
problems. Their scattering and transmission matrices are
given by

[0] D‘s]]

[S]=[

[As] (0]
[0] [Asrl}
T]= 14
il [[Asl o] (9
with [A ;] a diagonal (N X N) matrix with elements
S=ei! i=12,...,N

where B, is the propagation constant of the ith mode of the
uniform line and / is the line length.

Due to evanescent modes, [Ag]! usually contains very
large numbers, which may lead to an overflow, in particu-
lar when multiplications have to be performed. These
difficulties are only inherent to the transmission matrix
representation if the sum of all separating line sections is
much longer than the attenuation distance of the highest
order mode which is taken into account. (The attenuation
distance is defined as 1/|8,})

This situation can be circumvented if the cascaded dis-
continuities are collected into groups. Within each group
the sum of the line sections must not be much longer than
the attenuation distance. As has been sketched in Fig. 4,
the cascaded discontinuities within each group are treated
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Different slot patterns of finline discontinuities.

by applying the transmission matrix representation, while
the groups are then cascaded within the scheme of scatter-
ing matrices. The number of groups L will always be much
smaller than the number of junctions K, because long line
lengths simultaneously reduce the number of higher order
modes to be taken into account. The attenuation distance
is then also long.

IV. APPLICATION TO FINLINES

For discontinuities between waveguides having the same
housing as, e.g., finlines, shielded microstriplines, and sus-
pended substrate lines, it has already been shown [9], [10]
that there is no need to take different numbers of modes in
the individual waveguide sections into account. Hence, the
transmission matrix representation for cascaded discon-
tinuities is by far the fastest one as far as computer time is
concerned. Due to the finite thickness of the metal fins,
three different junctions are imaginable (see Fig. 5): a
decreasing (increasing) slot width corresponds to the
boundary-reduction (enlargement) case, while a shift in the
slot axis corresponds to the mixed-type problem. All these
discontinuities should preferably be described by transmis-
sion matrices from the point of view of reducing the
computation time. Saving CPU time is very important in
optimizing finline slot patterns, e.g., in the case of band-
pass filter or matching transformer design, where the slot
width and section lengths are changed many times accord-
ing to a suitable optimization algorithm until the system
response approaches the specified one.

V. NUMERICAL RESULTS

The validity of our approach of analyzing mixed-type
finline discontinuities has been checked by seeing whether
the dominant mode scattering matrix is unitary. The fields
on either side have been expanded into 5, 10, or 15 modes.
The results in Table I show that this matrix is unitary
irrespective of the number of modes. It should be noted
that at the operating frequency, only the dominant modes
on either side of the discontinuity are propagating.

The CPU time of both a transmission and a scattering
matrix representation of cascaded discontinuities is shown
in Table II. From this point of view, the former method is
preferable in particular if the number of junctions increases.

The influence of the number of modes is finally il-
lustrated by comparing the computed and the measured
reflection coefficient of the finline structure shown in Fig.
6. Because this structure is lossless, the magnitude of the
reflection coefficient I' should be unity. This has been
achieved computationally regardless of the number of
modes used to expand the field at both sides of the
discontinuity plane z = 0. The measured values have been
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TABLEI
UNITARITY OF THE DOMINANT MODE SCATTERING MATRIX
Number of Modes 5 10 15
S11 +{(0.401582) +7(0.048468)|+(0.419185) +5(0.025085)| +(0.414477) +3(0.068810)
S5 +(0.912102) =3(0.066707)|+(0.900601) -3(0.112097)|+(0.900574) -3(0.111490)
Syy +{0.912105) -7(0.066708)|+(0.900607) -5(0.112098)|+(0.900583) -3(0.111490)
S5, -(0.390258) +3(0.106380)|-(0.400246) +3(0.127078)-(0.385185) +3(0.167806)
* * .
$11-511%512-512 0.999997 0.999993 0.999990
* *
851-591%555-595 1.000003 1.000005 1.000006
511'S;1+S12'S;2 +(0.000001) +3(0.000000)|+(0.000002) +3(0.000001)|+(0.000003) +3(000001)
TABLE I1 Angle (Deg)
CoMPARISON BETWEEN CPU TIME NEEDED FOR 7- AND .
S-MATRIX FORMULATIONS 12 j ' ' ) i
cpu-time 1n seconds @ - 1
number of junc- T-matrix for- S-matrix for- o
tions mulation mulation
1 30 46
a8 | J
2 65 106
3 109 171
188 . R : . .
4 150 246 12 13 14 15 18 17 18
5 183 310 Fig. 7. Measured phase angle.
Error (Deg)
5 T T T T T
L]
' %
! hd 9 4 . 4
(=] .
! RN N A
b 3 o
: 3 ] 3 |3 3 |
1 3 c
X = 10 mods = o N I~
2 I - -
11 mm 3mm 15 moes AN
z=0 ! ——r e — — 7 1
i@
r=1.e’ : —
12 13 14 15 16 17 18

Fig. 6. The measured finline structure. Parameters: standard WR-62
housing, substrate thickness = 0.254 mm, €, = 2.22.
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Fig. 8. Effect of the number of modes on the phase angle error.



770

obtained using an automatic network analyzer PASCAL
program with 8-term correction implemented on an HP
9816 computer in conjunction with an HP 8410 C network
analyzer. The magnitude of the measured reflection coeffi-
cient did not exceed —0.1 dB over the Ku-band (12.4-18
GHz). The phase of the measured reflection coefficient is
shown in Fig. 7, the phase error in Fig. 8. It can be
concluded then that a number of modes between 10 and 15
is quite sufficient for the field expansion.
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