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Abstract —A general treatise of cascaded discontbruities in inhomoge-
rreous waveguides is given and appfied to finline circuits. A transmission
matrix representation is superior to a scattering matrix representation as
far as CPU time is concerned. The scattering matrix is, however, advanta-

geous if the sum of the line lengths separating the diwontinuities is large.
Numerical exanmles are given in order to illustrate the effect of increasirrf!

the number of modes u-&d

discontinuity.

T

THE PROBLE;

to represent the field at both sides of th;

INTRODUCTION

OF electromagnetic scattering at

~ waveguide discontinuities has been treated by many

exact and approximate methods. The most general, rigor-

ous, and systematic one is the modal expansion method,

which has been used, e.g., in [1]–[4]. Its formulation for

homogeneously filled waveguides differs from that for in-

homogeneously filled waveguides. In the former case, the

normal modes are either of the TE- or TM-type, so that the

transverse magnetic-field vector of any mode is related to

its transverse electric-field vector via the wave admittance.

This simplifies the problem to some extent through the use

of impedance and/or admittance matrices [3], [4]. In the

latter case, the normal modes are of the hybrid type (i.e.,

linear combinations of TE and TM fields) so that wave

impedances and/or admittances cannot be defined any

longer. Both electric- and magnetic-field vectors should be

used to characterize a hybrid mode. This general formula-

tion has been presented, e.g., in [1], [2]. It will be followed

here.

Microwave circuits usually consist of a large number of

line sections that are separated by abrupt junctions. In the

case of multisection finline bandpass filters, e.g., the di-

mensions of the slot pattern must be altered many times

during the numerical design procedure until the required

response curve is well approximated. Hence, saving CPU

time is an important factor in system design. We will

compare transmission and scattering matrix representa-

tions of cascaded junctions regarding this point. Another

important factor in saving CPU time is the number of

modes used to represent the field at both sides of the

discontinuity. This factor will also be studied by compari-

son to measured data. Finline circuits are taken as a case
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Fig. 1. Wavezuide discontinuities of the (a) boundary-reduction-type,
(b) ~oundary-erdargement-type, and (c) mixed-type. --

study, although the results are general and carI be applied

to any other circuit technology.

II. BASIC FORMULATION

Most of the waveguide discontinuities have either of the

forms shown in Fig. 1: a boundary-reduction-type [1], a

boundary-enlargement-type [1], and a mixed-type discon-

tinuity. Following [1] and [2], we will relate the complex

amplitude vectors a(1) and a ‘2) of the incident modes to

b(l) and f#) of the scattered modes. Limiting the number

of modes in guides “l” and” 2“ which are to be taken into

account to N and ~, respectively, both a(1) and b(l) can

be written as N-dimensional column vectors and a(2) and
b@) as M-dilmensiond ones.

From the many orthogonality relations existing between

the normal modes of uniform waveguides with perfectly

conducting walls and lossless isotropic filling media, we use

the following [5]:

(1)
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Fig. 2. Equivalence between a mixed-type discontinuity and two normal

discontinuities in cascade.

Here, e~lJ and h ~) are the transverse electric- and mag-

netic-field vectors of the n th and mth normal modes,

respectively, in waveguide “l”, e~2) and h ~) are the corre-

sponding vectors in waveguide “ 2“, 8. ~ is the Kronecker

delta, S1 and S2 are the cross sections of the corresponding

guides, and “*“ denotes “complex conjugate”.

A. Boundary-Reduction and Boundary-Enlargement

Discontiniuties

The analysis of both types of discontinuities is essen-

tially the same, so that we will give the equations describ-

ing the boundary-reduction-type (shown in Fig. l(a)) only.

By defining

A=nm J( )
e:) xh:l)* .d~,

(&)

n=l,2 N>. ...

m=l,2 M,. ... (2)

the amplitude vectors of the incident and reflected modes

can be related by the following two matrix equations:

[~p]. (a(l) +b(l))= [A]. (tz12J+@2)) (3a)

[A~]*.(b(2J-a@)= [A]*’.(atl)-b(l)) (3b)

where

[Ap] is an (N X N) diagonal matrix with elements P.,
[AQ] is an (M x M) diagonal matrix with elements Q~,

[A] is an (N X M) matrix with elements A~~, and

[A]*’ means the conjugate transpose matrix of [A].

B. Mixed-Type Discontinuity

The type of discontinuity shown in Fig. l(c) can be

regarded as two cascaded junctions, the first between wave-

guides “l” and “3” being of the boundary-reduction-type,

the second between waveguides “ 3“ and “2” being of the

boundary-enlargement-type. This equivalence has been

sketched in Fig. 2. The length 1 of guide “ 3“ is assumed to

be zero.

This treatment is not in principle different from that

proposed in [2], where the electromagnetic fields in wave-

guides “l” and “2” have independently been matched in

the junction plane z = ZO to a set of electric and magnetic

vectors which is complete with respect to the common

aperture between “l” and “2”. In our formulation, this

complete set is just the set of normal modes in waveguide

“ 3“ whose cross section equals the common aperture.

C. The Conservation of Complex Power

The continuity of complex power across a waveguide

junction has been used in [3] to replace the matching

condition for the transverse magnetic field. Furthermore,

this principle has been shown in [4] to result from match-

ing the transverse electric and magnetic fields in the junc-

tion plane. In both cases, the waveguides forming the

junction were homogeneously filled. We will prove in the

following that any of the relations originating from

1) matching the transverse electric field,

2) matching the transverse magnetic field,

3) the continuity of the complex power,

can be deduced from the other two.

This holds not only for junctions between homoge-

neously filled waveguides but also for the general case

where the normal modes are of the hybrid-type.

For any of the junctions shown in Fig. 1, the continuity

of the complex power is represented by the following

relation:

(a(l) _~(l))*f. [~p]. (a(l) +~(l))=

(f#)-a(4)*t. ~[ J(a(z)+b(z)). (4)

As an example, the boundary-reduction case is considered,

which is characterized by (3). These two equations repre-

sent, in fact, the matching of the electric and magnetic

fields, respectively, at the junction, and can be used to

verify (4). Inserting first (3a) and then (3b), we get

(a(l) _~(l))*~. [~p]. (a(l) +~(l))=

(a(O-bO))*~. [A]. (a(2) +b(2))=

(f#)_a(2))*1. ~[ ~]@2)+b(2)) QED,.. .

In a similar way, we can use any two equations of (3a),

(3b), and (4) to deduce the third.

D. Scattering Matrix Representation

As an example, the boundary-reduction case will be

treated. With

[R]= [~ P]-l. [A]

[TI=([AQ]-l. [AI’)* (5)

(3) can be written as

~(l)+ fJV= [~]. (a(2) +f#))

b(z)– a(z)= [T]. (a(l) _b(l)) (6)
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where [R] represents an (N X M) matrix, [T] art (M X N)

matrix so that the first relation establishes N linear equa-

tions, the second M equations. Thus, (N+ M) variables

can be expressed in terms of the other (N+ M) variables.

In particular, it is impossible to express a 11), b(l) in terms

of a(2), h(2J if N #M, because the former represent (2N ),

the latter (2iVf) variables. The most suitable choice of

dependent and independent variables is to express b(l), b(z)

in terms of a(1), a(2), each pair representing (N+ M) vari-

ables. This leads to the scattering matrix representation

with

[SIJ=([R][T]+[I] )-l.([R][T]- [l]),

an(Nx N) matrix

[S12]=2([R][T]+ [I]) -1.’[R], an(NXM) matrix

[S21]= [T]([l]-[&l]), an(Mx N) matrix

[S22]= [1]- [T][S12], an(MXit4) matrix (8)

and [1] is the unity matrix.

At least one matrix inversion and five matrix multiplica-

tions have to be performed in order to compute the differ-

ent submatrices of the scattering matrix.

E. Transmission Matrix Representation

The situation is much simpler for an equal number of

modes in waveguides “l” and “ 2“: N = M. Then one can

relate the incident and reflected modes in each waveguide

by the transmission matrix according to

(9)

with

[U]=~([R]-[T]-l)

[V]= ~([R]+[T]-l). (lo)

The computation of the submatrices [U] and [V] requires

just one matrix inversion. Hence, it is faster than the

computation of the submatrices of the scattering matrix.

The only restriction is that an equal number of modes must

be used at either side of the junction.

The network theory of multiple-port microwave net-

works developed in [6] uses both transmission and scatter-

ing matrices. Although the formulation with the transmis-

sion matrix seems to be quite general, it has been proven

there that for the general case M # N there exists a

mathematical inconsistency. In what follows, we will give a

deeper insight into the reasons.
Assume an (N X M) matrix [A] is pre-multiplied by an

(M x N) matrix [B] in order to get a square matrix [C] of

order (M x M)

[c]=[B]. [A].

Then the M equations represented by the rows of [C] are

[ II=
[5;;’1 [.$:1

[s’:1 [s;:1

=(1)
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+dk ~
Fig. 3. Scattering matrix representation of cascaded discontinuities.

expressed as M linear combinations of the originad N

equations represented by the rows of [A]. Two cases must

be distinguished.

1) M <N: Then one has lost all the information which

is contained in the now missing (N – M) equations, al-

though [C] may be inverted.

2) M > N: Then the additional (M – N) equations are

linearly dependent on the other N equations and [C’] is

singular, i.e., it cannot be inverted.

In conclusion, it is important to know that matchirlg N

modes at one side of the discontinuity to M modes at the

other always results in (N+ M) equations relating 2( M +

N) variables. Hence, the only possibility is to express

(N+ M) variables in terms of’ the other (N+ M) vari-

ables.

A further advantage of the transmission matrix represen-

tation is the easy handling of mixed-type discontinuities.

The resulting submatrices [U] and [V] are then given by

[U]= [va][q?]+[ua][l’j]
[vl=[val[b]+[ual[ ~p]. (11)

Subscripts a and ~ refer to the junction between “l” and

“3” and between “ 3“ and “2”, respectively.

F. Cascaded Discontinuities

In the case of cascaded discontinuities, there are two

approaches. The first is to process the individual scattering

matrices for calculating the overall scattering matrix. ‘This

approach has already been used for both the general case

of interconnected multiports (e.g., in [7] and [8]) ancl the

specific case of cascaded discontinuities (e.g., in [9]). Refer-

ring to Fig. 3, the submatrices forming the overall scatter-

ing matrix (superscript t) relating the reflected waves b(l),
b(2) to the incident waves a (1), a(2) are given by

[Sf;)]=’[SJ;)]+ [S&)][S&][E][S#]

[Sg)] = [sJ:’].([I]+ [sf;’][E][si;’] ).[sf;’]

[S#] = [SJ;)][E][$;)]

[$;)] = [$;)]+ [S#)][E][Sj;)] [S#]

[E]= ([l] -[ S#][S~;)])-l. (12)
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Fig. 4. Collecting discontinuities into groups which are cascaded by
processing scattering matrices.

These calculations require at least one matrix inversion and

ten matrix multiplications, if two discontinuities in cascade

are to be treated.

The second approach can be, applied only if equal num-

bers of modes are used for any of the guides. Then the

individual transmission matrices can be processed. This

requires eight matrix multiplications and no matrix inver-

sion according to the following relations which can be

derived from Fig. 3 (in which S should be thought to be

replaced by T):

III. THE OVERFLOW PROBLEM

Cascaded discontinuities are always separated by uni-

form line sections, which may give rise to computational

problems. Their scattering and transmission matrices are

given by

‘s]=[l::l‘h]]
‘T]=k..l ‘AK!

(14)

with [A ~] a diagonal (N X N) matrix with elements

S’, =e-J~il, i=l,2,..., N

where ~, is the propagation constant of the ith mode of the
uniform line and 1 is the line length.

Due to evanescent modes, [As]- 1 usually contains very

large numbers, which may lead to an overflow, in particu-

lar when multiplications have to be performed. These

difficulties are only inherent to the transmission matrix

representation if the sum of all separating line sections is

much longer than the attenuation distance of the highest

order mode which is taken into account. (The attenuation

distance is defined as l/lfl~l.)

This situation can be circumvented if the cascaded dis-

continuities are collected into groups. Within each group

the sum of the line sections must not be much longer than

the attenuation distance. As has been sketched in Fig. 4,

the cascaded discontinuities within each group are treated

w
??ZZ77Z

—z

Fig. 5. Different slot patterns of finline discontinuities.

by applying the transmission matrix representation, while

the groups are then cascaded within the scheme of scatter-

ing matrices. The number of groups L will always be much

smaller than the number of junctions K, because long line

lengths simultaneously reduce the number of higher order

modes to be taken into account. The attenuation distance

is then also long.

IV. APPLICATION TO FINLINES

For discontinuities between waveguides having the same

housing as, e.g., finlines, shielded microstriplines, and sus-

pended substrate lines, it has already been shown [9], [10]

that there is no need to take different numbers of modes in

the individual waveguide sections into account. Hence, the

transmission matrix representation for cascaded discon-

tinuities is by far the fastest one as far as computer time is

concerned. Due to the finite thickness of the metal fins,

three different junctions are imaginable (see Fig. 5): a

decreasing (increasing) slot width corresponds to the

boundary-reduction (enlargement) case, while a shift in the

slot axis corresponds to the mixed-type problem. All these

discontinuities should preferably be described by transmis-

sion matrices from the point of view of reducing the

computation time. Saving CPU time is very important in

optimizing finline slot patterns, e.g., in the case of band-

pass filter or matching transformer design, where the slot

width and section lengths are changed many times accord-

ing to a suitable optimization algorithm until the system

response approaches the specified one.

V. NUMERICAL RESULTS

The validity of our approach of analyzing mixed-type

finline discontinuities has been checked by seeing whether

the dominant mode scattering matrix is unitary. The fields

on either side have been expanded into 5, 10, or 15 modes.

The results in Table I show that this matrix is unitary

irrespective of the number of modes. It should be noted

that at the operating frequency, only the dominant modes

on either side of the discontinuity y are propagating.

The CPU time of both a transmission and a scattering

matrix representation of cascaded discontinuities is shown

in Table II. From this point of view, the former method is

preferable in particular if the number of junctions increases.

The influence of the number of modes is finally il-

lustrated by comparing the computed and the measured

reflection coefficient of the firdine structure shown in Fig.

6. Because this structure is lossless, the magnitude of the

reflection coefficient r should be unity. This has been

achieved computationally regardless of the number of

modes used to expand the field at both sides of the

discontinuity plane z = O. The measured values have been
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TABLE I
UNITARITY OF THE DOMINANT MODE SCATTERING MATRIX

~–——- - ‘- ‘“-

5

+(0.401582) +] (0.048468)

10

+(0.419185) +j(O .025085)

15

+(0.414477) +] (0.068810

Number of Modes

Sll

0.066707) 0.112097) L(O .900574) -j 0.111490
S12

+(0.912102) -]

} (0.912105) -3

-(0.390258) +]

+(0.900601) -]

.

+(0.900607) -j

—

-(0.400246) +]

0.066708) 0.112098) F(O .900583) -j 0.111490
S21

S22
0.106380) 0.127078) -(0.385185) +j 0.167806

s * +s12. s;2
11”s11

0.999997 0.999993 0.999990

1.000006
* *

’521 “521 ‘522”s22
1.000003 1.000005

* *
Sll “’521+s 12”s22

1(0.000001) +j(O .000000) +(0.000002) +j(O. 000001) F(O .000003) +] (000001)

TABLE II Rngle (Deg)

COMPARISON BETWEEN CPU TrME NEEDED FOR T- AND

S-MATRIX FORMULATIONS
180

cpu-time In seconds I 90

number of ]unc - T-matrix for- S-matrix fOr–
0

tlons mulatlon mulatlon

1 30 46
-90

2 65 106

3 109 171
-180

4 150 246 12 13 14

Fig. 7.
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obtained using an automatic network analyzer PASCAL

program with 8-term correction implemented on an HP

9816 computer in conjunction with an HP 8410 C network

analyzer. The magnitude of the measured reflection coeffi-

cient did not exceed – 0.1 dB over the Ku-band (12.4–18

GHz). The phase of the measured reflection coefficient is

shown in Fig. 7, the phase error in Fig. 8. It can be

concluded then that a number of modes between 10 and 15

is quite sufficient for the field expansion.
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